Regularity Rallying Finding the unknown time

In the previous articles the basics where introduced, then counting White lines as a means of determining your speed. In this installment I am going to share how you can work out the time you should be at a point when it would seem impossible to do so.

Below is an example to get the ball rolling, from distance 11 proceed at $60 \mathrm{~km} / \mathrm{h}$ to distance 12.7, then change speed (CS) to $30 \mathrm{~km} / \mathrm{h}$ till the end at distance 14, simple enough.

Dist	A Speed	Rally Schedule	Time h,m,s
10.00	60	Sign 100	$00: 10: 00$
10.80	60	Windmill	$00: 10: 48$
$\mathbf{1 1 . 0 0}$	60	Sign	$00: 11: 00$
12.70	30	Change speed (CS)	$00: 12: 42$
$\mathbf{1 4 . 0 0}$	30	Sign END	$00: 15: 18$

But what if the schedule only instructed a change speed, with no distance or time given, see below, now the picture is a little different.
The unknown could be a speed change at an STC, a Marshal or one of those overhead wires we all love.

Dist	A Speed	Rally Schedule	Time h,m,s
10.00	60	Sign 100	$00: 10: 00$
10.80	60	Windmill	$00: 10: 48$
$\mathbf{1 1 . 0 0}$	60	Sign	$00: 11: 00$
	30	Change speed (CS)	Unknown
$\mathbf{1 4 . 0 0}$	30	Sign END	$00: 15: 18$

The time can be determined:
Time unknown = distance covered (km) * 3600 +/- time difference (second) multiplied by the last speed (km / h) all divided by the difference in speeds (km/h).

The (+/-) bit is key, whatever the answers are from the workings subtract the smaller result from the larger.
The result is in decimal minutes, which is converted to minutes and seconds.
Step 1 Subtract the start distance from the end distance, then multiply by 3600
Step 2 Subtract the start time from the end time (times in seconds) then multiply by the last speed (km/h)
Step 3 Subtract the higher speed from the slower one, both (km / h)
Step 4 Subtract the lesser of the answers from 1 or 2 from the other, then divide this by the answer from Step 3.
Step 5 Convert the answer from step 4 to minutes.
Step 6 Convert the decimal portion from step 5 to seconds

1. $(14.00-11.00 * 3600)=10800$
2. 15:18-11:00 (258 seconds * second speed 30$)=7740$
3. $60-30=30$
4. $(10800-7740) / 30=102$
5. Convert to minutes $(102 / 60)=1.7$ minutes.
6. Multiply the decimal portion by $60,\left(0.7^{*} 60\right)=42$ seconds.

Time unknown $=11: 00+01: 42=12: 42$

Further example

Dist	A Speed	Rally Schedule	Time h,m,s
10.00	65	Sign 100	$00: 10: 00$
10.80	65	Windmill	$00: 10: 44$
$\mathbf{1 1 . 2 0}$	65	Sign	$00: 11: 06$
13.60	30	Change speed (CS)	$00: 13: 19$
$\mathbf{1 5 . 8 0}$	30	Sign END	$00: 17: 43$

1. $(15.80-11.20) * 3600=16560$
2. $17: 43-11: 06(397$ seconds * second speed 30$)=11910$
3. $65-30=35$
4. $(16560-11910) / 35=132.857$
5. Decimal convert $132,857 / 60=2.214$ minutes
6. Multiply the decimal portion by $60\left(0.214^{*} 60\right)=12.85$ (13 seconds)

Time unknown $=11: 06+02: 13=13: 19$
Rounding errors that may be reflected in the printed times on the rally schedule can result in the time derived being a second or so out.

Roger Lewis

Further examples to play with

In these examples the speed increases.

Dist	A Speed	Rally Schedule	Time h, m, s
10.00	50	Sign 100	$00: 10: 00$
10.80	50	Windmill	$00: 10: 58$
$\mathbf{1 1 . 2 0}$	50	Sign	$00: 11: 26$
13.60	66	Change speed (CS)	$00: 14: 19$
$\mathbf{1 5 . 8 0}$	66	Sign END	$00: 16: 19$

1. $(15.80-11.20) * 3600=16560$
2. 16:19-11:26 (293 seconds * second speed 66) $=19338$
3. $66-50=16$
4. $(19338-16560) / 16=173.625$
5. Decimal convert $173.625 / 60=2.893$ minutes
6. Multiply the decimal portion by $60\left(0.893^{*} 60\right)=53.6$

Time unknown $=11: 26+02: 53=\mathbf{1 4 : 1 9}$

Dist	A Speed	Rally Schedule	Time h, m, s
10.00	45	Sign 100	$00: 10: 00$
10.80	45	Windmill	$00: 11: 04$
$\mathbf{1 1 . 2 0}$	45	Sign	$00: 11: 36$
14.00	67	Change speed (CS)	$00: 15: 20$
$\mathbf{1 5 . 8 0}$	67	Sign END	$00: 16: 57$

1. $(15.80-11.20) * 3600=16560$
2. 16:57-11:36 (321 seconds * second speed 67$)=21507$
3. $67-45=22$
4. $(19338-16560) / 22=224.863$
5. Decimal convert $224.863 / 60=3.7477$ minutes
6. Multiply the decimal portion by $60\left(0.7477^{*} 60\right)=44.86$ (45)

Time unknown $=11: 36+03: 45=\mathbf{1 5 : 2 1}$

Dist	A Speed	Rally Schedule	Time h,m,s
$\mathbf{4 9 . 9 0}$	85	Windmill	$00: 47: 31$
	55	Change speed (CS)	$00: 48: 01$
52.00	55	Sign END	$00: 49: 32$

1. $(52.00-49.90) * 3600=7560$
2. 49:32-47:31 (121 seconds * second speed 55) $=6655$
3. $85-55=30$
4. $(7560-6655) / 30=30.1666$
5. Decimal convert $30.1666 / 60=0.502$ minutes
6. Multiply the decimal portion by $60\left(0.502^{*} 60\right)=30$

Time unknown $=47: 31+00: 30=48: 01$

Calculate the Unknown time when all you are given is a Speed Change

Dist	A Speed	Rally Schedule	Time hrs, min, sec
10.00	65	Start	
10.20	65	Sign CS	
Dist A	Speed 1	Windmill	Time A
	65		
	Speed 2		Unknown time
Dist B		Sign END	Time B

Time unknown = distance covered (km)* $3600+/-$ time difference (second) multiplied by the last speed ($\mathbf{k m} / \mathbf{h}$) all divided by the difference in speeds $(\mathbf{k m} / \mathbf{h})$.

Subtract the larger of Result 1 or 2 from the smaller
Decimal Minutes
Formula $=\frac{\text { Result 1/2 } \quad-\quad \text { Result 2/1 }}{\text { divide by Result } 3}$

Multiply the fractionof the decimal minutes by $60=$
Seconds
\square

Rally work sheet - Roger Lewis version: Dec 2017

